NON-EUCLIDEAN GEOMETRY

I. Introduction

Euclidean geometry, the kind most of us studied in high school, works very well for
small jobs like designing a building or surveying a city lot. Similarly, the theory that
the Earth is flat is quite satisfactory if you stay close to home. But if you assume that
the Earth is flat and try to map something big, say Lake Michigan, you will find that
something is wrong; when you have gone all the way around the lake, and are back where
you started, you will have to fudge your measurements to make the shoreline meet at a
point. The nature of the difficulty becomes obvious if you leave the Earth and take a trip
to the Moon.

If you try to map the universe, you will encounter more serious difficulties, and there
will be no way to make them appear obvious; you cannot get outside the universe and look
back to see whether it is “flat”.

The best we can do for a start is to illustrate the problems of geometry on the cosmic

scale by trying a few things on the surfaces of lab-sized spheres.

II. Constructions, Observations, Questions

A. Review of Euclidean Geometry

On a flat sheet of 8 1/2” x 11” paper draw two straight parallel lines several inches
apart, two straight lines that cross at a point, and a large equilateral triangle. Use a
compass to locate the corners of the triangle.

The parallel lines are everywhere the same distance apart. They do not cross. Of
course, that is what you mean by parallel lines.

The lines that cross only cross at one point. As you move along one of the lines away
from the crossing point, you get farther from the other line and farther from where you
started. Of course!

Measure the angle between two sides of the triangle with a protractor. Maybe you

remember what the answer should be, but measure it anyway.
B. Almost Euclidean Geometry

- On one of the spheres provided in the lab, lay out an area about the size of the sheet
of paper used in Part A. If you ignore everything outside the area, you could draw the
same figures you did before using a flexible plastic ruler and a compass or protractor, and

everything would be the same as before— almost. (The Flat Earth theory is nearly OK if



you stay close to home.) Let us try it. Draw the parallel lines (several inches apart) and
the crossing lines. Near the boundary of the area, draw one side of a triangle the same
size as the one on the flat sheet. Now use the protractor to measure the same angle you
found in Part A. Draw that side of the triangle the same length as the first. Again use the
protractor to find the direction for the third side.

Draw that third side the same length. Did you get back where you started? Did the
triangle close? If not, make a sketch on the flat sheet (your map) showing in what way
the figure fails to be a triangle.

Now use a compass to lay out a large equilateral triangle inside the area. Join the
points using the flexible ruler. This time you are guaranteed to get a figure that is closed,

equilateral, and equiangular. Measure the angles with the protractor. What do you get?
C. Non-Euclidean Geometry

Now erase the boundaries of the area on the sphere.

1. Extend the (well-separated) parallel lines, keeping the flexible ruler flat on the
surface. Is anything different? Do the lines stay the same distance apart? Do they
ever cross? If so, where? How often?

2. Extend the lines that cross. As you move away from the crossing point, do the
lines keep getting farther away from each other? Do they ever become parallel?
Do they cross again? Where? Are they different from parallel lines?

3. Keeping the flexible ruler flat on the surface, draw a line all the way around the
sphere. If you do it carefully, you will get back where you started. You have drawn
a “great circle.” Notice that if you were walking along a great circle, you would be
going straight: That is, you would be turning neither to right nor to left. On the
Earth, the equator is an example of a great circle. What is another example?

Now using the compass, mark off a curve that is everywhere the same distance from

the great circle, and another curve parallel to that, etc., from the great circle. On the
Earth, starting from the equator, these would be lines of constant latitude. Notice that to
walk along a line of latitude, you must continuously turn to the right or left. The farther
you are from a great circle, the faster you have to turn. Imagine walking in a 10 foot
diameter circle around the North Pole. '

Pick two points on a great circle. Stretch a string between them. Does the string follow

the curve? Stretch a string between two points on a line of longitude. Does the string
follow the line? Stretch a string between two points at the same latitude (but not on the
equator). Does the string follow a line of constant latitude on the globe? On a globe find

the shortest route from Chicago to Tokyo.



Draw a big triangle using the compass system. Now how big are the angles? Describe

the biggest triangle you can draw on the sphere. How big are its angles?
D. The Expanding Universe

This part is about the expanding universe, not the big bang. The balloon you will use
should not be over-inflated or punctured. Do not use a pointed compass.

On the uniflated balloon draw an equilateral triangle, draw a scale marked off in
arbitrary units (cm would be OK), and draw several dots labeled A, B, C, etc. Inflate the
balloon until the distance AB has doubled. What has happened to the triangle? Is it still
equilateral? Equiangular? Have the angles changed? Has the size of the triangle changed
as measured with the plastic ruler? Has it changed as compared with the scale on the
balloon?

What has happened to the distance between C and D? Are there any two dots for
which you could not say the same thing?

If the universe and everything in it is twice as big today as it was yesterday, could we
detect the change? (Assume that all measuring sticks are bigger, and that all clocks are
slower in proportion to the change in size.)

Inflate the balloon some more. As it expands, what happens to any two points? (Now
we are back to measuring sticks and clocks that stay fixed while galaxies recede.) Is there
any special, central point?

If at some instant you measure the distance, D, between two points, and the speed V
at which they are receding, how could you guess how long the balloon has been expanding?
The laboratory assistant will discuss how to measure the speed at which other galaxies

recede from ours.
E. Straight Lines

One way to explain the differences between Part A and C is to say that they involve
different concepts of a straight line. In each case, we could use a stretched string, but in C
the string was bent by the sphere and was not “really” straight. So what is really straight?

How about sighting along the string? Stick a straight wire into water at an angle. It
will look bent. It has to be bent to look straight. See how to make it look straight. Sketch
the result. A light beam passing by the Sun is bent toward the Sun. Sketch how it bends
and show where the source appears to be to an observer on the Earth.

Imagine that a string has somehow been extended from our galaxy to another one
two billion light years away. Set aside the difficulty that the two galaxies are receding so
rapidly that a pull on one end (as would be necessary to adjust the string to the shortest

route) can never reach the other (the “pull” cannot travel faster than the speed of sound).



Now sight along the string to see if it is straight. How long will that take? Where will the
other galaxy be when you get through?

These questions still do not get to the bottom of the problem, but they should be
sufficient to show that there are some interesting puzzles concerning the geometry of the

universe.



